

GDS850A Glow Discharge Spectrometer

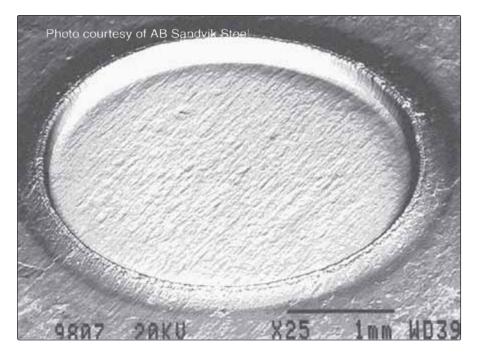
Glow Discharge Spectrometer

LECO Glow Discharge Atomic Emission Spectrometers (GD-AES) are the clear choice of leading companies around the world, providing the most accurate bulk analysis, as well as quantitative depth profiling for a wide variety of sample matrices and applications.

Delivering customers a true turn-key solution, the GDS850 is configured and calibrated at the factory, in order to provide a custom analytical tool optimized to your sample matrices. Due to the robust nature of the system, samples can be analyzed immediately after installation. Only LECO provides this level of customization and customer support.

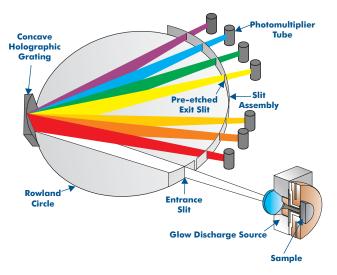
Using the latest technology in hardware and software, the GDS850A is designed to enhance the performance of both process control and R&D applications. This instrument covers a wide spectral range (120 to 800 nm) and allows for custom configurations of up to 58 channels. Compared with spark sources, GD-AES employs a non-thermal glow discharge source for atomic excitation. Excitation of the atoms occurs in the glow discharge plasma discretely apart from the sample surface thereby reducing the metallurgical and chemical history inherent in all samples. Emission of ion wavelength spectra is almost completely eliminated thereby giving rise to less complex spectra typical of thermal excitation sources.

This unique method of excitation results in true bulk analysis providing a distinct advantage in accurately identifying chemical compositions, especially of difficult materials, over other excitation methods.

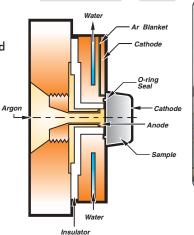


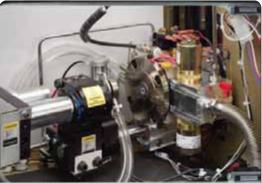
GDS advantages over other analytical techniques


- Separation of sputtering and excitation
- Linear calibration curves with wide dynamic range
- Less self absorption and no material re-deposition
- Atomic emission consists primarily of ground state atom lines, resulting in fewer lines and reduced interferences
- Freedom from metallurgical and chemical history
- Fewer standards required for calibration
- Minimal memory effects for a quick matrix change
- Low Argon gas consumption
- Automatic cleaning between samples


The Power of Glow Discharge Spectrometry

The signature "sputter spot" from glow discharge spectrometry shows uniform sample removal and provides the large representative area needed for accurate sampling of bulk content and depth profile information. Competitive methods cannot provide this quality of data because of their random sampling processes. The cathodic sputtering process of the Grimm-type lamp is created by applying a controlled voltage, current, and argon pressure to the sample surface. The diagram below details the excitation and emission of the sample atoms in the argon plasma. Reduced line interferences by alow discharge result in simple linear calibrations. GDS delivers higher precision with fewer calibration standards for an unbeatable advantage over arc spark.


Other methods may preferentially attack the sample surface and do not always provide a representative sample to analyze. With glow discharge spectrometry, sample material is uniformly sputtered from the surface. The non-thermal nature of the sampling process makes this an excellent technique for difficult applications. The sputtering produces atoms for excitation that takes place away from the sample surface.

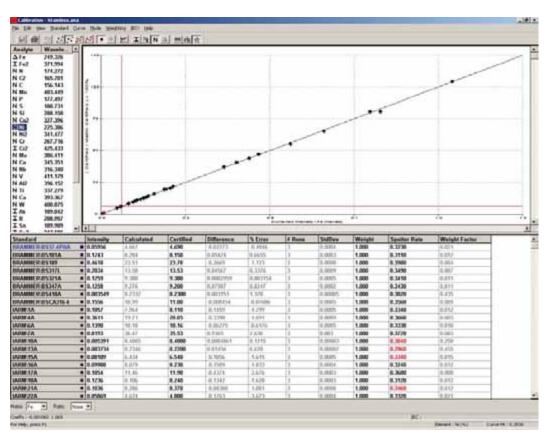


When the excited atoms return to ground state, they emit light. Each wavelength emitted is characteristic of the element from which it came. A holographic diffraction grating separates and focuses the light by wavelength. Exit slits pass the light of your chosen elements on to the detectors for accurate measurement.

Bulk Performance Plus

Unlike other methods, GDS can handle your bulk applications like sheet, powder, fastener, pressed, and mounted samples. Even small samples like wire (0.25 mm diameter) can be accurately tested. Thin sheets (down to 0.02 mm in thickness and even thinner) may be successfully analyzed using a backplate and cooling puck. Just about any sample form can be characterized by glow discharge technology. The flexibility of LECO instruments allows you to easily add depth profiling capabilities as your needs change.

The LECO GDS source offers complete flexibility for control of operating parameters including current, voltage, and pressure.


Bulk Applications

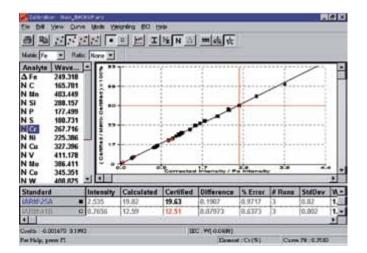
LECO delivers a fully calibrated instrument based on your applications.

- Steel (low and high alloyed, leaded, resulfurized)
- Iron (as-cast, chilled-cast, gray, ductile)
- Aluminum (high Si, composites)
- Copper

- Brass/Bronze (leaded)
- Nickel
- Cobalt
- Titanium
- Tungsten
- Magnesium

- Solders (Zn, Pb)
- Zinc
- Carbides
- Powdered Metals
- Low Melting Point Alloys
- Elements not in Solid Solution

Ni calibration in stainless steel. Calibration curve exhibits linearity and wide dynamic range.



Accurate Bulk Analysis

Ideal for foundries, die casters, smelters, and all ferrous/nonferrous applications.

22	A 200 2004 200	simi area								-					1
1			de Linnale				1.1.1.1.1.1		1.4		-				
	Name	1104	SI DA	ade (TL)	100	10.054	PH CH	NO TH	Cr3 m	YOU .	May (14	Cut nu	TICH	ALC C	ų,
-	·*********	99.6	0,864	8,711	6.638	4.833	4,180	3,44	4,235	8,8519	8,183	4.564	4.162	8.054	
۲.	·	88.6	1.868	8.714	8.829	6.834	8.185	2.81	8.236	8.8512	8,183	8.385	9.188	8.854	
		01.0	1.20	0.718	8.434	-6.674	8.179	1.41	8,234	4.2011	8.183	4.247	4.186	6.003	
1.7	a 2010/07/07	BALT:	8.538	110	8.611	8.828	8.564	1.18	8.818	81100	8.586	11100	6.883	8.879	
1.1	B 10007102402	941	8,221	2.08	8,833	6.628	8,341	1.18		8.168	0.236	8.121	6.852	8.879	
£	B 0001110402		8.331	3100	4.633	4,824	0.540	.112	10.039	11111	0.000	10.001	4.843	4479	
π.	A-NUET11763	95.8	10,194	1.84	A.811	4.831	8.621	8.914	34.886	8.386	3,898	8,5436	4.313	8.542	
ŧ	a 2003711763	85.8	10,184	1.08	10.011	4.823	3.818	9.018	1.004	8.304	8.347	30.0437	0.394	6.643	
۰	8 2857-1783	95.9	8,185	4.54	4.811	4,423	8,415	4.521	8.508	8.364	4.547	8,8437	4.308	8.843	
	\$ 785T11784	85.5	8.589	1.23	8.829	4,812	8.8525	9,268	1.48	8.785	8.188	8.511	4.828	4,004	
٤	#/PEST11794	45.5	3,391	1,23	8.439	0.813	4.0534	0.208	1.88	8.185	8,197	9.515	4.828	4,000	
£	A PESTITIA	85.5	2.584	1.38	8.030	6.812	8.0157	6.788	1.48	8.165	8.187	8.518	6.838	8,008	
1	B BUBMIS		2.01	8.003				8,728	-					6.5/2	
	# DUDANI3-		3.03	0.308			_	8.729						4.579	
£	B GUERNIS-		2.84	8,368				8.736		1.11				8.581	
<u> </u>	B DUD AR14			1.000	8.029	0.004	0.788		1.08	8.0710	8,8128	0.0881	9.852		
r	8 5054914	24			0.040	4.884	0.199		1.54	4.8755	8,8128	0.0485	4,812		
	B SUBRILL				8.645	0.354	8.199	4	1.58	8.8/13	8.8129	0.0687	4.412		
<u> </u>		88.4	1.21	8.867	8.641	9.433	8.189	1.68	8.229	1.0+01	8.0804	8.282	6.166	3.834	
£	# MRTISTES	85.8	1.83	3.664	8.841	4.872		1.88	#.228	1.5488	8,8855	3.254	0.178	8.053	
1	A 788715791	85.8	1.82	6.885	0.001	4,633	6.178	2.98	8.229	0.0499	8,8952	8,294	0.174	8,054	
1	BOWST11782	94.1	0.328	2.92	0.033	4.827	0.342	1.18	0.010	8.185	8,338	0,110	0.094	4.071	
8	#Destilies	188.1	3,314	2.89	8,834	4.837	8.342	1.18	8.010	8.188	8,341	3.118	0.394	8.871	
	B PERFORMENT	14.1	8,329	2.84	8.004	4.82/	18.343	1.13	3.817	8.785	8.338	4.118	0.094	8.671	
٤	·************	95.8	3,167	1.80	4.813	4.821	4.439	8.514	0.517	4.364	0.400	,0,0408	4.291	4.643	
<u> </u>	· WST15783	95.8	8,967	1.88	8,812	4.821	8.627	5.518	8.551	8.384	3.488	8.5419	1.295	8.643	
8	\$ PEST 1782	95.4	9,197	1.09	9,615	4,821	8,628	6,521	-8.699	8,394	9,485	9,0407	4.267	6.063	
-	B 457/7/16	45.5	8.576	1.71	8.020	8.811	8.0561	A.185	1.45	8.187	8.685	8.548	8.838	1.000	
Lal.	Pecty	CT (14		Min (Siz	10		109	HOW		0.01	(01)		NOV.	_	ä
WQ.	84.1	8.331		2.87	8.83		8.829	8.343		.58	8.82		8.188		3
TR.	8.60788	4.56051		0.00211	4,89		8,008	0.0013		.00574	0.00		8,0005	45	3
65	6.668	8.982		6.158	1.34	ł	8.908	8.562		485	8.09		8.308		2

Multiple sample presentation of bulk data using the GDS850A Glow Discharge spectrometer displaying all samples analyzed in a simple organized spreadsheet.

Net: Net: Frame:	Cent. Statute Date: 324206 15.216.8 Analyses Arvic Cent.abased Centrel Difference And Enter June 1 June 1 June 1 Perfus N.N. Anno Anno 1 June 1 June 1 June 1 Perfus N.N. Anno Anno 1 June 1 June 1 June 1 Perfus N.N. Anno Anno 1 June 1 June 1 June 1 Marcia Non 1 June 1 June 1 June 1 June 1 June 1 Anno 1 June				Indi Laur						MUNUM LIPSAN	
Average Average <t< th=""><th>Average Average <t< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>and the second second</th><th></th></t<></th></t<>	Average Average <t< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>and the second second</th><th></th></t<>					-					and the second second	
Perful Mail Asse Mail Asse Mail Mail <thmail< th=""> Mail Mail <t< th=""><th>Perful No.3 Asse Hol.3 description Science Sci</th><th>Care Marc</th><th>te: Core</th><th>end allow</th><th></th><th></th><th></th><th>with Lord</th><th>Date: AL</th><th>24206 18.36.4</th><th>13</th><th></th></t<></thmail<>	Perful No.3 Asse Hol.3 description Science Sci	Care Marc	te: Core	end allow				with Lord	Date: AL	24206 18.36.4	13	
C2 (n) 2.231 4.234 4.234 4.234 4.234 MCTPU 2.47 2.24 2.44 4.234 2.45 2.46 MCTPU 2.47 2.40 4.244 2.212 2.46 2.46 MCTPU 2.47 2.40 4.44 2.272 4.246 2.46 2.46 MCTPU 2.47 2.44 4.44 2.277 4.246 2.347 4.341 MCTPU 1.45 1.45 4.447 2.274 4.244 2.347 4.341 MCTPU 1.45 1.45 4.4477 3.274 4.341 2.347 4.341 MCTPU 1.45 1.45 4.4471 3.244 4.341 5.341 MCTPU 3.338 8.474 4.248 6.338 6.346 6.346 MCTPU 3.338 8.474 4.448 5.346 5.346 5.346 MCTPU 4.348 4.347 4.448 5.346 5.346 5.346	C2 (Pu) 2.231 4.234 4.234 4.234 5.231 MCPU 2.47 1.23 2.43 4.234 5.231 5.231 MCPU 2.47 1.23 2.43 4.234 5.231 5.231 MCPU 2.47 1.23 2.43 4.244 5.231 6.232 6.232 6.232 MCPU 2.431 2.434 4.244 5.237 4.634 5.247 6.242 MCPU 1.51 5.51 4.644 5.244 5.241 5.247 MCPU 1.51 5.51 4.644 5.248 5.241 5.241 MCPU 1.51 5.51 4.644 5.248 5.241 5.241 MCPU 1.51 5.51 4.644 5.248 5.241 5.241 MCPU 1.51 5.24 4.644 5.248 5.241 5.241 MCPU 5.24 5.241 5.241 5.241 5.241 5.241 MCPU 5.2				Contrad					Burn 3		
No. Tot LAF LAF <thlaf< th=""> LAF <thlaf< th=""> <thlaf< t<="" td=""><td>No. Tot Law <thlaw< th=""> <thlaw< <="" td=""><td></td><td></td><td></td><td>34.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlaw<></thlaw<></td></thlaf<></thlaf<></thlaf<>	No. Tot Law Law <thlaw< th=""> <thlaw< <="" td=""><td></td><td></td><td></td><td>34.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlaw<></thlaw<>				34.3							
Phoi Sumpi Sumpi <ths< td=""><td>Phoi Sumpi Sampi <ths< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ths<></td></ths<>	Phoi Sumpi Sampi Sampi <ths< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ths<>											
R.Y.L R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.Y.L S.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.Y.L S.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.Y.L S.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.Y.L. S.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.Y.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. V.N. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. V.N. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. V.N. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. V.N.W. R.R.W. R.R.	E.T.S. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. R.R.W. REV_L S.H.S. S.H.W. G.A.M.YT S.H.W. R.R.W. R.R.W. REV_L S.H.S. S.H.W. G.A.M.YT S.H.W. S.H.W. S.H.W. S.H.W. REV_L S.H.S. S.H.W. S.H.W. S.H.W. S.H.W. S.H.W. S.H.W. S.H.W. S.H.W. S.	Min (%)			2.88	8.5788	3.762					
Birgl Coli Coli <t< td=""><td>Birgs Coli Schil Coli Schil<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td></t<>	Birgs Coli Schil Coli Schil </td <td></td>											
NB (N) L10 L11 L11 L11 L11 L11 V(2) L10 A100 K100 K100 <td>NB(PA) L10 L11 L11 L11 V(2) L10 L01 L11 L11 V(2) L10 L10 L10 L11 V(2) L10 L10 L10 L10 V(3) L10 L10 L10 L10 V(3) L10 L10 L10 L10 V(3) L10 L10 L11 L11 V(3) L10 L10 L11 L11 V(3) L10 L10 L10 L11 V(4) L10 L10 L10 L11 V(4) L10 L10 L11 L11</td> <td></td>	NB(PA) L10 L11 L11 L11 V(2) L10 L01 L11 L11 V(2) L10 L10 L10 L11 V(2) L10 L10 L10 L10 V(3) L10 L10 L10 L10 V(3) L10 L10 L10 L10 V(3) L10 L10 L11 L11 V(3) L10 L10 L11 L11 V(3) L10 L10 L10 L11 V(4) L10 L10 L10 L11 V(4) L10 L10 L11 L11											
Color Alge Alge <t< td=""><td>COLDA AND AND AND AND AND VOL XXXX XXXX XXXX XXXX XXXX Margin XXXXX</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	COLDA AND AND AND AND AND VOL XXXX XXXX XXXX XXXX XXXX Margin XXXXX											
V_CL X.100 X.200 4.2000 X.200 X.100 X.100 Mar(N) X.100 X.100 X.100 X.100 X.100 X.100 Mar(N) X.100 X.100 X.100 X.200 X.200 Mar(N) X.100 X.100 X.100 X.200 X.200 Mar(N) X.100 X.100 X.200 <td>VPL LTM <thltm< th=""> <thltm< th=""> <thltm< th=""></thltm<></thltm<></thltm<></td> <td></td>	VPL LTM LTM <thltm< th=""> <thltm< th=""> <thltm< th=""></thltm<></thltm<></thltm<>											
Min (%) 0.304 0.304 0.304 0.304 0.304 Car (%) 0.304 0.304 0.304 0.304 0.304 Tr(%) 0.404 0.404 0.404 0.404 0.404 Tr(%) 0.404 0.404 0.404 0.404 0.404 Mor(%) 0.404 0.404 0.404 0.404 0.404	Min (%) 0.304 <											
Gai (Pa) B.110 B.110 B.110 B.110 B.111 Th(G) S.810 S.810 S.810 S.810 S.810 S.810 Th(G) S.810 S.810 S.810 S.810 S.810 S.810 AC(2) S.810 S.810 S.810 S.810 S.810 S.810 Version TC.810 S.810 S.810 S.820 S.820 S.820 Version TC.810 S.810 S.810 S.820 S.820 S.820 Version TC.810 S.810 S.810 S.830 S.830 S.830	Gai (Pa) B.110 B.110 B.110 B.111 Th(G) E.001 B.001 A.001 E.011 E.011 Th(G) E.001 B.001 A.001 E.011 E.011 AC(2) E.011 E.011 E.011 E.011 E.011 AC(2) E.011 E.011 E.011 E.011 E.011 Version E.011 E.011 E.011 E.011 E.011 Version E.011 E.011 E.011 E.011 E.011											
Trip Last Last <thlast< th=""> Last Last <thl< td=""><td>Troit Last <thlast< th=""> Last Last <th< td=""><td>the City</td><td></td><td></td><td></td><td></td><td>2.485</td><td>8,348</td><td></td><td>8.314</td><td></td><td></td></th<></thlast<></td></thl<></thlast<>	Troit Last Last <thlast< th=""> Last Last <th< td=""><td>the City</td><td></td><td></td><td></td><td></td><td>2.485</td><td>8,348</td><td></td><td>8.314</td><td></td><td></td></th<></thlast<>	the City					2.485	8,348		8.314		
AR2(54) 5.879 5.879 5.899 5.991 1.238 5.879 5.879 5.679 Version 10.243 5.879 5.889 10.243 10.243 10.243 Version 10.243 5.879 5.879 10.243	ARCEA 6379 6379 6389 6391 5234 6379 6375 6379 Vecum 16243 6379 6399 6234 6350 6534 Vecum 16243											
Versam 16,313 8,800 8,800 16,343 16,343 Velage 1347 6,800 8,800 1347 1347	Vacuum (0,010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000				0.005	-4.883						
Voltage 1357 0.000 0.000 1367 1367 1367	Voltage 1157 6.000 3.000 1167 1167 1267			8.879	8.888							
		VALLANT	10.345			8.304	4,000			18.348		
Servine 141.046 0.000 04.000 44.000 44.000	Servin 14.346 4.366 4.366 44.366 44.366											
		Current	44,846			4.346	8.888	44.244	44.888	44.000		

Single sample screen of a certified check standard can be easily monitored for elements of interest and accuracy.

Calibration Screen

Use the Windows[®]-based toolbars and drop-down menus to select a variety of analytical procedures. Simply select a method, choose the samples and standards to be analyzed, and start.

The software allows sampling rates of up to 2000 data points-per-second regardless of the number of channels selected. Results from ppm levels can be viewed on a large color monitor.

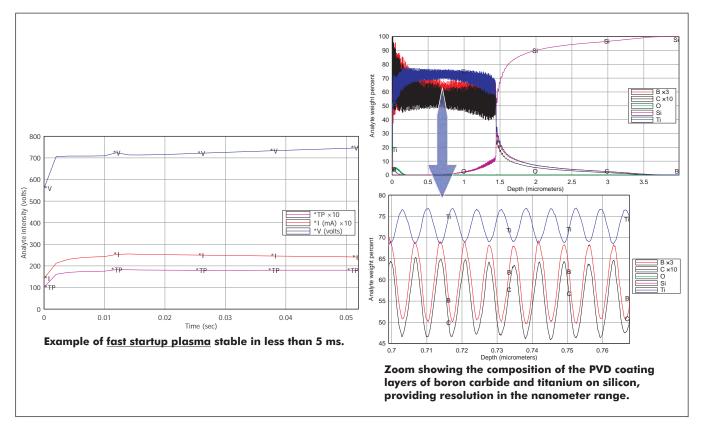
Quantitative Depth Profiling (QDP) Solutions

QDP is an ideal method for early identification of potential problems with your materials (including coatings, layers, and thermochemical treatments). Why use GDS? The GDS technique can perform a depth profile analysis continuously from nanometers to hundreds of micrometers. Combined with a fast sputtering rate ($0.5 \mu m$ to $30 \mu m/min.$), GDS provides the complete chemical composition (ppm to 100%) from the surface to the substrate in only a few minutes. All elements are acquired simultaneously, increasing sample throughput while minimizing cost-per-analysis.

QDP Applications

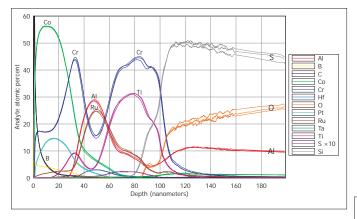
Your instrument will be fully calibrated for your specific application upon delivery.

- Galvanizing (EG, Hot Dip, Galvalume, Galvanneal, Galfan, Zinc-Nickel)
- Plating (Sn, Cr, Cd, Ni, Cu)
- Thermochemical treatments (Carburizing, Nitriding, Carbonitriding)
- Hard coatings made by PVD/CVD
- Clad (Aluminum)

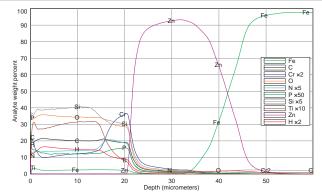

QDP Quickly Identifies

- Contamination and cleanliness at the surface and interfaces
- Migration and diffusion at interfaces
- Heterogeneity of coating/substrate
- Adherence issues

- Oxide layers
- Organic coatings
- Semiconductors
- Glass/Ceramics
- Oxidation/corrosion
- Inclusion/blister
- Chemical composition
- Layer thickness/coating weight

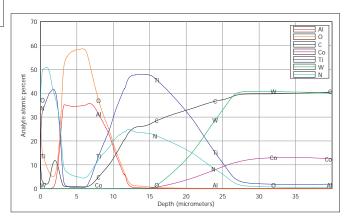

Thin Alternating Multi-Layers

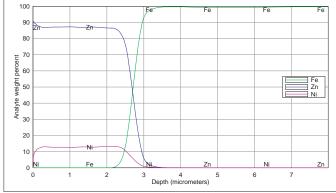
LECO offers you the ultimate Glow Discharge Spectrometer capable of quantifying thin alternating multi-layers.



Quantitative Depth Profiling (QDP) Solutions Meeting production, process, and research requirements.

Three replicate QDPs of the surface of a hard disk exhibiting seven resolved layers at a depth of 100 nanometers.

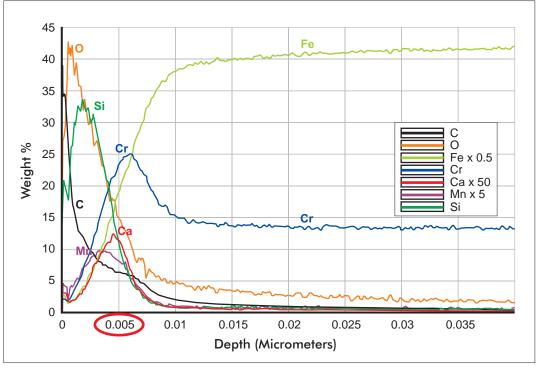



of painted steel sheet showing three different organic layers—topcoat paint and primer—on the galvanization (Zn).

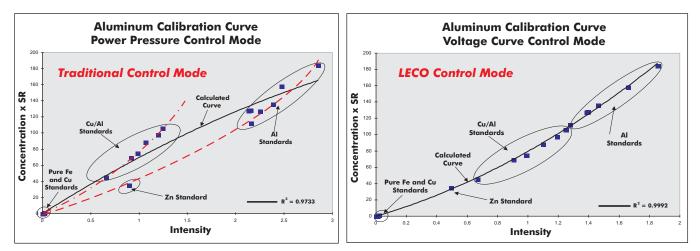
QDP analysis of organic coatings. **QDP**

QDP of the corrosion-resistant electrogalvanized Zn/Ni coating on the surface of sheet steel, showing coating thickness, weight, and alloy composition.

Zn-Ni 1 2.72 19.93 87.36 12			Coating Wt, g/m ²		
2111112.72 15.55 07.56 12	Zn-Ni 1	2.72	19.93	87.36	12.61



QDP analysis of multilayer sample, including conductive and non-conductive layers. Example of TiN, TiCN, Al₂O₃, TiN, and TiCN on cemented carbide. Display of Atomic % vs. Depth for stoichiometry check.


RF Source Option

With an additional RF option, the GDS is capable of quantifying non-conductive thin oxide layers, at nanometer resolution, on materials such as stainless steel.

QDP of a stainless steel coupon coated with a 5 nm oxide layer.

True Plasma Power[®] (TPP)

In conjunction with LECO's patented front coupling is the exclusive treatment of RF power to ensure that lamp parameters are constant regardless of matrix and material thickness. TPP is power control in real-time which compensates for the various RF power losses. Compensated losses include transmission losses, absorption losses, and radiative losses, in addition to realtime compensation of reflected power.

It has been well documented that GD lamp conditions are affected by specimen matrix. It is necessary to apply precise control to the voltage and current for accurate quantification. The voltage-current relationship is important for accurate and consistent results and these parameters can be measured directly in DC. In contrast, for RF, only the voltage and power in Watts can be measured. When the TPP is held constant and the voltage is maintained precisely by varying the lamp pressure, the current is also constant. In this manner the DC control mode is emulated where both voltage and current can be measured and are held constant.

LECO Corporation 3000 Lakeview Avenue • St. Joseph, MI 49085 • Phone: 800-292-6141 • Fax: 269-982-8977 info@leco.com • www.leco.com • ISO-9001:2000 • No. FM 24045 • LECO is a registered trademark of LECO Corporation.

